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Domain Decomposition Methods for a Parallel Monte
Carlo Transport Code1

Henry J. Alme, Garry H. Rodrigue, and George B. Zimmerman
Lawrence Livermore National Laboratory

Achieving parallelism in simulations that use Monte Carlo transport methods presents
interesting challenges. For problems that require domain decomposition, load balance can
be harder to achieve. The Monte Carlo transport package may have to operate with other
packages that have different optimal domain decompositions for a given problem. To examine
some of these issues, we have developed a code that simulates the interaction of a laser with
biological tissue; it uses a Monte Carlo method to simulate the laser and a finite element model
to simulate the conduction of the temperature field in the tissue. We will present speedup
and load balance results obtained for a suite of problems decomposed using a few domain
decomposition algorithms we have developed.

Keywords: parallel processing, Monte Carlo transport, domain decomposition

1 Introduction

Parallel processors have great potential in scientific computing; Realizing that potential has
been difficult in many areas. Using parallel computers on problems involving Monte Carlo
transport presents new issues. The locality of the calculation in Monte Carlo transport
makes domain decomposition more challenging.

A typical domain decomposition method for a calculation involving a differencing
scheme will be independent of the physics involved. Recursive Spectral Bisection [1]—
a popular decomposition algorithm for problems in difference schemes—considers only
the mesh in deciding the decomposition. For Monte Carlo transport calculations, a decom-
position method that considers the physics of the problem may have a better chance at
success.

This paper is laid out as follows: Section 2 briefly outlines the model used to simulate
laser-tissue interaction. In Section 3, we discuss some of the issues involved in a parallel
laser-tissue code. Section 4 discusses domain decomposition of Monte Carlo transport
calculations and explains our approach. We present the results of some test problems in
section 5. Section 6 combines a summary with a brief discussion of some possible future
work.

2 Laser-Tissue Models

For this paper, we examine parallel processing of a problem in laser-tissue interaction. The
model has two modules: a Monte Carlo transport module that models laser light scattering

1Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore Na-
tional Laboratory under Contract W-7405-ENG-48.
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and absorption using Monte Carlo photonics, and a finite element module that models the
thermal heat conduction and tissue damage of the tissue under laser irradiation.

2.1 Photon Transport

The collision density φ(~x;~Ω) satisfies the steady state transport equation:

φ(~x;~Ω) = Sc(~x;~Ω)+
Z Z

K(~x0;~Ω0 !~x;~Ω)φ(~x0;~Ω0)d~x0d~Ω0 (1)

The solution is computed each time step using Monte Carlo photon transport. The photons
are scattered using a Henyey-Greenstein phase function with an anisotropy factor g= :9,
which has been found to be a reasonable model for biological tissue [2, 3].

Each photon in the simulation is a “super photon” representing many photons. Each
photon starts with a statistical weight set to 1. As the photon moves through the com-
putational grid, it’s weight is exponentially attenuated using the absorption coefficient µa.
We use Russian Roulette to decide when to terminate a particle history. When a particle’s
weight drops below a user-defined level, a random number determines at each collision if
the particle continues or if its history is terminated and its remaining weight deposited in
its current zone.

2.2 Tissue Response

2.2.1 Thermal Transfer.

The energy balance for tissue under laser irradiation is

ρcv
∂
∂t

T(~x; t) =�∇ �~q+S(~x; t) (2)

where ρ is the density of the material, cv is the specific heat, ~q is the conductive heat
flux vector, and S is a source term consisting of separate terms reflecting, for example,
energy added due to laser irradiation or lost due to cooling from blood circulation. For
a homogeneous isotropic medium, the conductive heat flux vector is given by the Fourier
Law as

~q=�κ∇T(~x; t) (3)

where κ is the thermal conductivity of the medium. Sl(~x; t), the source term due to the
laser, is proportional to teh collisiosn density and is given by

Sl(~x; t) = Bφ(~x; t) (4)

where φ(~x; t) is the collision density of radiation with the material.
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2.2.2 Tissue Damage.

Damage to the tissue can be modeled using a first order Arhennius rate equation[4]. Dam-
age is represented by a parameter Ω(t) that is calculated for each zone by integrating the
rate equation

Ω(t) =
kb

h

Z t

0
T(τ)exp

�
∆S
R
�

∆H
RT(τ)

�
dτ (5)

where kb, h, and R are Boltzmann’s Constant, Planck’s Constant, and the gas constant,
respectively. ∆H and ∆Sare the enthalpy and entropy of the reaction, respectively.

The damage Ω affects the optical properties in a zone. The scattering coefficient µs

varies between two prescribed values: the undamaged value µs;u and the fully damaged
value µs;d according to the relation

µs(t) = µs;ue�Ω(t)+µs;d(1�e�Ω(t)) (6)

Thus the scattering coefficient in a zone will begin at µs;u when Ω(0) = 0 and will move
monotonically toward µs;d as Ω increases.

3 Parallelizing Laser-Tissue Calculations

3.1 Domain Decomposition for Finite Elements

Domain decomposition for a finite element calculation is reasonably well understood.
There are well-known algorithms, such as Recursive Spectral Bisection [1], that will pro-
vide reasonable decompositions of the computational mesh.

There are two rules of thumb for decomposing finite element or finite difference prob-
lems. The first rule is that the decomposition should assign approximately equal numbers
of zones to each processor – this ensures load balance. The second rule concerns com-
munications costs; the ratio of computing to communication time heavily influences the
speedup of a calculation. This ratio is in turn related to the surface area to volume ratio of
subdomains.

For a finite element calculation, RSB will usually provide a decomposition that takes
the above into account. It will generally provide similar sized domains with a minimal
amount of communication required.

3.2 Parallel Monte Carlo

The previous rationale for using the RSB algorithm does not apply to a Monte Carlo trans-
port calculation. There are two issues in parallelizing Monte Carlo calculations absent in
finite element calculations.

First, the computational effort is not evenly distributed over the mesh. Some zones
in a Monte Carlo transport calculation will have more particle collisions, requiring more
computation time. Simply getting the same number of zones on each processor will not
necessarily guarantee load balance.

3
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The second issue is the lack of a priori knowledge of the work distribution for a given
calculation. The stochastic nature of Monte Carlo transport calculations makes it impossi-
ble to predict exactly where the sample particles will go in the course of a calculation.

4 Decomposing Monte Carlo

4.1 Types of Parallelism for Monte Carlo

4.1.1 Task Farm Parallelism.

Task Farm parallelism (Fig. 1) takes advantage of the independence of the individual pho-
ton histories involved in a single Monte Carlo time step. Each processor has a complete
copy of the computational mesh and tracks a fraction of the photon histories desired. The
final answer comes from a global reduction after all photons have been tracked.

Task farm parallelism is the method used in past work on parallel Monte Carlo transport
calculations (see, for example, [5, 6, 7, 8, 9]), due to its ease of use. Only two issues arise:
the need for the individual processors to have independent random number streams, and
the need for the global reduction at the end of each time step, both easily handled. The
literature is extensive on parallel random number issues (see [10, 11] for examples), and
the global reduction requires a minimum of new design and coding.

As problems continue to grow in resolution and as three dimensional problems become
common, this approach becomes less useful. For some problems, the entire computational
mesh will not fit into the memory of a single processor. This requires a different approach,
as discussed below.

4.1.2 Spatial Parallelism.

Spatial parallelism (Fig. 2) is a more typical method in computational physics. Each pro-
cessor gets a portion of the computational mesh, a subdomain. The particles then move
about as normal, but a particle now may cross a boundary between processors. When this
happens, the processor hands the particle off to the processor that owns the new domain.
This requires message passing.

CPU 0

CPU 1

CPU N

Global Reduction

Answer

Figure 1: Task Farm Parallelism. Final
answer via global reduction

CPU 0

CPU 1

CPU 2

Message Passing

Message Passing

Figure 2: Spatial Parallelism. Particles
cross CPU boundaries via messaging.
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4.1.3 A Hybrid Approach

The parallelized Monte Carlo transport problems in this paper use a hybrid approach, com-
bining task farm parallelism with spatial parallelism. The computational mesh is divided
into subdomains small enough to fit onto a processor; there will typically be more pro-
cessors available than subdomains. The subdomains will be replicated across some subset
of the processors, ensuring that each subdomain is assigned to at least one processor (see
Fig. 3).

This approach allows for some flexibility. Subdomains requiring more computational
effort can be replicated on more processors than subdomains requiring less effort. This
allows for the best load balance possible, maximizing the performance increase from the
parallel computer. The issue then becomes one of determining the amount of effort needed
in a subdomain.

CPU 0

CPU 0

CPU 0 CPU 0

CPU 0

Task Farm 1

Task Farm 2

Messaging

Figure 3: A Hybrid Approach. Combination of task farm and spatial parallelism

4.2 The Computational Effort

To estimate the amount of computational effort needed in a given section of the mesh, we
employ some heuristics. Here we use the physics of the problem to help determine a good
decomposition.

4.2.1 Mean Free Path Estimate

The first heuristic we examined, mean free path (mfp) estimation, uses the scattering mean
free path (λ = 1=µ) and the distance from the particle source (r) to estimate the work that
will occur in a zone. Our problems used point sources of particles, so we estimate the work
in zone i as

Wi =
µ
r
: (7)
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4.2.2 Coarse Grid Estimate

Coarse grid estimation uses a lower resolution version of the given problem to estimate the
work distribution. A smaller number of particles are tracked through a coarser version of
the computational mesh, keeping track of the amount of effort involved in each zone. The
work estimate for a zone in the fine mesh will then be the actual work for the coarse zone
that contains it.

4.3 Decomposition

We decomposed the problems into two subdomains that had approximately equal numbers
of zones. The work estimate is used for each subdomain to decide how many times we
would replicate each subdomain on the processors. The decision to use two subdomains
was arbitrary; other problems may require more subdomains due to memory constraints.
A problem could be divided into more that two subdomains by recursively decomposing
the subdomains.

Initially, each subdomain was assigned to one processor. We assigned the remaining
processors one at a time, always assigning the next processor to the subdomain with the
highest estimated work per processor. Provided the work estimate is accurate, this will
provide the best load balance possible.

We used two different decomposition methods to divide the mesh into two subdomains.
The first decomposition algorithm found an estimated work value wc such that the sets
H = fijwi > wcg and L = fijwi � wcg had approximately equal cardinality (i.e. wc is close
to the median work estimate for a zone). For the types of problem we have run, this simple
decomposition method yields two contiguous domains. For this paper, we refer to this as
Median Work Estimate (mwe) decomposition.

The second method cut the mesh along a plane parallel to a user-defined plane. The de-
composition algorithm selected a plane parallel to one defined by the user that divided the
mesh into two subdomains with equal amounts of estimated work. This method ignored
the sizes of the subdomains. For the test problems in this paper, it generated similar-sized
subdomains. A more sophisticated algorithm may be necessary for other problems. For
this paper, we refer to this as axis-wise decomposition.

5 Results of Some Test Problems

5.1 The Test Problems

We used the algorithms discussed to decompose the mesh for three test problems. Each
problem uses a 20x20x20 grid. The material properties vary for the different problems.
The relevant material properties for the Monte Carlo module are the scattering coefficient
µs and the absorption coefficient µa.

Uniform: In the first test problem, uniform (see Fig 4), the material properties are uni-
form over the entire mesh. The attenuation coefficient is typical for undamaged biological
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Source

Figure 4: Uniform test problem. The ma-
terial is homogeneous

Source

Figure 5: Near Wall test problem. The
slab is optically thick.

tissue. The source is a collimated beam incident on one face of the mesh.

Near Wall: The near wall test problem (Fig. 5) also has a beam source. There is a slab
of material with a higher attenuation coefficient normal to the source. The attenuation
coefficient for the slab is high enough that few particles will penetrate to the material
behind the slab.

Source

Figure 6: Tube Test problem. The tube is optically thick, the source is isotropic

Tube with a Hole: Test problem tube (See Fig. 6) is a true three dimensional problem. It
has a tube of material that is optically thick running parallel to one axis of the mesh. The
tube has a circular hole cut in one side. The particle source is isotropic and placed inside
the tube, opposite the hole. This is the first part of an effort to simulate endovascular patch
welding [12]—previously done in two dimensions—in three dimensions.

For each test problem, five separate series of runs were made. The first run used a
conventional decomposition method typical of finite element problems. The mesh was
divided into as many disjoint subdomains as there were processors, and the problem run.
We refer to this as geometric decomposition in this paper.

In addition to the geometric decomposition, we used both work estimation methods
(mean free path and coarse grid estimation) in combination with each method of dividing
the computational mesh in two (median work estimate and axis-wise decomposition).
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The geometric decomposition will tend to use less memory. It has as many subdomains
as processors, where the hybrid method—as used in this paper—always uses two subdo-
mains. The comparison of the geometric decomposition with the hybrid decomposition is
useful to see the difference between a method that does not consider the locality of Monte
Carlo transport (geometric) and one that does (the hybrid method).

5.2 Numerical Results and Discussion

The test problems were run on a Digital AlphaServer 8400 (the “DEC machine”) at the
Lawrence Livermore National Laboratory computing center. The DEC machine had eight
processors available. The code used the MPI library to handle message passing.
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Figure 7: Timing Results for test problem uniform

The speedup results for the three test problems are plotted in Figs. 7, 8, and 9. For
each problem, the total time for a single Monte Carlo cycle is plotted against the number
of processors. Each plot has a separate line for each decomposition algorithm used. If
the scaling were perfect, the time would decrease as t1=N, where t1 is the time on one
processor and N is the number of processors. The t1=N curve is on each plot, labeled
“Perfect Scaling.”

Timing results for the test problems uniform and nearwall (Figs. 7 and 8) are en-
couraging. In both cases, the hybrid decomposition approach outperformed the geometric
decomposition. In test problem nearwall, the hybrid approach ran twice as fast. For these
test problems, the hybrid decomposition scheme achieved better load balance and lowered
communication costs.

The results for test problem tube (Fig. 9) were less impressive. The hybrid scheme
performed as well as geometric decomposition in most cases. One of the mean free path
decomposition schemes performed very poorly; this is due to the median work estimate
algorithm generating a poor decomposition, where the subdomains were not contiguous.
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Figure 8: Timing Results for test problem nearwall

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

M
on

te
 C

ar
lo

 C
yc

le
 T

im
e

Processors

Timing Data for Test Problem TUBE

Geometric
Coarse Grid, MWE Decomp
Coarse Grid, Axis Decomp

Mean Free Path, MWE Decomp
Mean Free Path, Axis Decomp

Perfect Scaling

Figure 9: Timing Results for test problem tube

9



NECDC    October 1998

This greatly increased communication time compared to computation time for this prob-
lem, as particles crossed many more inter-processor boundaries.

Closer examination—in progress–of the results of the test problems indicate that, with
the exception of the problems discussed above, load balance is the most important factor
affecting performance of the parallel code. The time spent idle due to communication
latency was dwarfed by the time spent idle waiting for other processors to complete work.

One source of load imbalance came from the communication scheme used in the code.
A typical decomposition resulted in some subdomains being replicated more often than
others. This resulted in an unbalanced communication scheme, which causes a load im-
balance.

PE 0

Domain 0

PE 2

Domain 0

PE 3

Domain 0

PE 1

Domain 1

Part ic les from domain
0 to domain 1

Part ic les from domain
1 to domain 0

Figure 10: Unbalanced communication scheme can cause load imbalance

Fig. 10 illustrates the problem. Processor 1 has domain 1, it communicates with several
processors with domain 0. It receives particles from all of the processors with domain 0,
but only sends particles to processor 0. This tends to give processor 0 more work to do than
processor 2 and processor 3, causing a load imbalance. This problem is being addressed by
modifying the communication scheme so that a processor may split its outgoing particles
for a domain among the processors that have that domain.

The axis-wise decompositions were most effective in achieving load balance for the
problems tested. We saw the best speedups over geometric decomposition for test problem
nearwall.

6 Summary and the Future

Effective use of parallel computers is important in facilitating the move to the three di-
mensional codes that are the future of computational physics. We have examined some
methods for parallelizing Monte Carlo transport calculations that take into account the
locality of Monte Carlo. The examples come from laser-tissue modeling, but the lessons
learned can help in other types of transport. Domain decomposition without reference
to the physics or the numerics of a calculation that uses Monte Carlo transport will be
problematic.

The hybrid task farm-spatial scheme outlined in Sec. 4.1.3 shows great promise as a
method for using parallelism for computational models that have a Monte Carlo transport
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package working in concert with other packages. It allows all packages to benefit from par-
allelism, but provides the most enhancement to the Monte Carlo package, which typically
consumes the largest part of the computation time.

In the future, we hope to improve the algorithms that decompose the mesh by attempt-
ing to minimize the amount of time that must be spent communicating between proces-
sors. For example, a modified version of the RSB algorithm mentioned in Sec. 3.1 could
generate decompositions that account for the communication required across an interface.

Another option being considered is a dynamic decomposition algorithm. In a time
dependent problem, the actual computational effort expended per zone can be tracked
and the decomposition modified based on that information for future cycles.
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